Fonction logarithmique naturelle

Si tu investis 1000 $ à un taux d'intérêt de 5 % composé continuellement, combien de temps te faudra-t-il pour devenir millionnaire ? Nous examinerons ici :

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Fonction logarithmique naturelle

  • Temps de lecture: 5 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Inscris-toi gratuitement pour sauvegarder, modifier et créer des fiches.
Sauvegarder l'explication Sauvegarder l'explication
  • Contenu vérifié
  • Publié le: 18.06.2024
  • Temps de lecture: 5 min
Tables des matières
Tables des matières
  • Contenu vérifié
  • Dernière mise à jour: 01.01.1970
  • Temps de lecture: 5 min
  • Processus de création de contenu conçu par
    Lily Hulatt Avatar
  • de contenu vérifiées par
    Gabriel Freitas Avatar
  • Qualité du contenu vérifiée par
    Gabriel Freitas Avatar
Inscris-toi gratuitement pour sauvegarder, modifier et créer des fiches.
Sauvegarder l'explication Sauvegarder l'explication

Sauter à un chapitre clé

    • la définition de la fonction logarithme naturela> et sa relation avec la fonction exponentielle naturelle,

    • comment représenter graphiquement la fonction logarithme naturel, et

    • comment convertir une fonction logarithmique en fonction logarithme naturel.

    Définition de la fonction logarithme naturel

    Rappelle-toi que e est la base utilisée dans la fonction de croissance et de décroissance exponentielle g(x) = ex. Pour plus de détails, voir Croissance et décroissance exponentielles. En outre, tu sais que les fonctions exponentielles et les logarithmes sont des inverses l'un de l'autre, donc l'inverse de la fonction de croissance exponentielle est f(x) = logex. Cependant, ce logarithme naturel est tellement utilisé qu'il a une abréviation :

    La fonction logarithme naturel f(x) = logex est l'inverse de la fonction exponentielle g(x) = exet s'écrit f(x) = logex = lnx. Cela se lit comme "f de x est le logarithme naturel de x".

    Le graphique ci-dessous montre que le logarithme naturel est la réflexion de la fonction de croissance exponentielle sur la ligney=x.

    Fonction logarithmique naturelle Fonction exponentielle inverse StudySmarterLe logarithme naturel et la fonction de croissance exponentielle | StudySmarter Originals

    En termes intuitifs, la fonction exponentielle t'indique l'ampleur de la croissance d'une chose en un certain temps, et le logarithme naturel te donne le temps qu'il faut pour atteindre un certain niveau de croissance. Tu peux y penser comme suit

    etime = how much growthln (how much growth) = time

    Supposons que tu aies investi ton argent dans du chocolat, avec un taux d'intérêt de 100 % (parce que qui ne veut pas acheter du chocolat), en croissance continue. Si tu veux voir 20 fois ton investissement initial, combien de temps dois-tu attendre ?

    Réponse :

    Le logarithme naturel te donne le temps nécessaire. Puisque ln20 3tu n'as besoin d'attendre qu'environ 3 ans pour voir ton investissement initial multiplié par 20. C'est le pouvoir de la capitalisation continue !

    Le domaine de la fonction logarithme naturel

    Propriétés de la fonction logarithme naturel

    Comme la fonction logarithme naturel n'est qu'un logarithme de base e, elle a les mêmes propriétés que la fonction logarithme ordinaire.

    Propriétés de la fonction logarithme naturel :

    • il s'agit d'un logarithme de base e
    • il n'y a pas d'ordonnée à l'origine
    • l'ordonnée à l 'origine est à 1, 0
    • le domaine est (0, )
    • l'étendue est -,
    • ln(ex) = x
    • elnx = x

    Pourquoi lne = 1?

    Réponse :

    L'une des raisons est que le logarithme naturel et la fonction exponentielle sont des inverses l'un de l'autre.

    ln(e) = ln(e1) = 1

    Mais la raison la plus intuitive est que le logarithme naturel t'indique combien de temps il faut pour atteindre un certain niveau de croissance. Par conséquent, te demander de trouver ln(e) revient à te demander de trouver le temps qu'il faut pour atteindre une croissance"e". Mais grâce à la fonction exponentielle, tu sais qu'il faut 1 unité de temps à la fonction g(x) = ex pour atteindre la valeur"e", donc lne = 1.

    Conversion d'autres fonctions logarithmiques en fonctions logarithmiques naturelles

    Il peut être utile de changer la base des fonctions logarithmiques pour voir comment elles se comparent entre elles. Pour ce faire, utilise la règle des proportions pour les logarithmes,

    logbx = logaxlogab.

    Puisque tu veux convertir logb(x) en loge(x)utilise a= e pour obtenir

    logbx = logaxlogab = logexlogee = lnxlnb

    Ainsi, l'expression f(x) = logbx est équivalent à f(x) = lnxlnb.

    Convertir les fonctions h(x) = log2x et g(x) = logx en base eet les représenter graphiquement sur la même image.

    Réponse :

    Rappelle-toi que lorsqu'une base n'est pas mentionnée, on suppose qu'il s'agit de la base 10. En utilisant la règle des proportions, tu obtiens donc

    h(x) = log2x = lnxln(2),

    et

    g(x) = logx = lnxln10

    Il s'agit donc simplement de multiples constants de la fonction logarithmique naturelle.

    Comparaison du logarithme naturel, du logarithme de base 2 et du logarithme de base 10 | StudySmarter Originals

    Dérivés de la fonction logarithme naturel

    La dérivée de la fonction logarithme naturel est

    ddxlnx = 1x

    Pour plus d'informations sur la dérivée de la fonction logarithme naturel, voir Dérivée de la fonction logarithme.

    Intégration des fonctions logarithmiques naturelles

    L'intégrale de la fonction logarithme naturel est

    ln(x) dx = x·lnx - x + C

    Pour plus d'informations sur l'intégrale de la fonction logarithme naturel, voir Intégrales impliquant des fonctions logarithmiques.

    Fonction logarithme naturel - Principaux enseignements

    • Le logarithme naturel et la fonction exponentielle sont des inverses l'un de l'autre.
    • Le logarithme naturel de x est le temps qu'il faut pour que la fonction y = ex pour atteindre la croissance y.
    • La fonction logarithme naturel f(x) = logex est l'inverse de la fonction exponentielle g(x) = exet s'écrit f(x) = logex = lnx.

    Apprends plus vite avec les 0 fiches sur Fonction logarithmique naturelle

    Inscris-toi gratuitement pour accéder à toutes nos fiches.

    Fonction logarithmique naturelle

    Questions fréquemment posées en Fonction logarithmique naturelle

    Qu'est-ce qu'une fonction logarithmique naturelle?
    La fonction logarithmique naturelle, notée ln(x), est le logarithme de base e, où e est un nombre irrationnel approximativement égal à 2,71828.
    Quelle est la dérivée de la fonction logarithmique naturelle?
    La dérivée de ln(x) est 1/x, pour x > 0.
    À quoi sert la fonction logarithmique naturelle?
    La fonction logarithmique naturelle est utile en calcul différentiel, en analyse des phénomènes de croissance et d'extinction, et en finance pour le calcul des intérêts composés continus.
    Comment intégrer une fonction logarithmique naturelle?
    Pour intégrer ln(x), utilisez l'intégrale de parties: ∫ln(x)dx = xln(x) - x + C, où C est la constante d'intégration.
    Sauvegarder l'explication

    Comment tu t'assures que ton contenu est précis et digne de confiance ?

    Chez StudySmarter, tu as créé une plateforme d'apprentissage qui sert des millions d'étudiants. Rencontre les personnes qui travaillent dur pour fournir un contenu basé sur des faits et pour veiller à ce qu'il soit vérifié.

    Processus de création de contenu :
    Lily Hulatt Avatar
    Lily Hulatt

    Spécialiste du contenu numérique

    Lily Hulatt est une spécialiste du contenu numérique avec plus de trois ans d’expérience en stratégie de contenu et en conception de programmes. Elle a obtenu son doctorat en littérature anglaise à l’Université de Durham en 2022, a enseigné au Département d’études anglaises de l’Université de Durham, et a contribué à plusieurs publications. Lily se spécialise en littérature anglaise, langue anglaise, histoire et philosophie.

    Fais connaissance avec Lily
    Processus de contrôle de la qualité du contenu:
    Gabriel Freitas Avatar
    Gabriel Freitas

    Ingénieur en intelligence artificielle

    Gabriel Freitas est un ingénieur en intelligence artificielle possédant une solide expérience en développement logiciel, en algorithmes d’apprentissage automatique et en IA générative, notamment dans les applications des grands modèles de langage (LLM). Diplômé en génie électrique de l’Université de São Paulo, il poursuit actuellement une maîtrise en génie informatique à l’Université de Campinas, avec une spécialisation en apprentissage automatique. Gabriel a un solide bagage en ingénierie logicielle et a travaillé sur des projets impliquant la vision par ordinateur, l’IA embarquée et les applications LLM.

    Fais connaissance avec Gabriel
    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter
    Lance-toi dans tes études
    1

    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 5 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication
    Sauvegarder l'explication
    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !